Proses berfikir kreatif seorang seniman melahirkan ide baru dalam karya seni.
Mockup Desain poster
April 11, 2010
Pengetahuan Lingkungan dalam Desain Interior
by: Rosa Zulfikhar
AIR
“AIR BERSIH"
A. PENGERTIAN
Air adalah zat atau materi atau unsur yang penting bagi semua bentuk kehidupan yang diketahui sampai saat ini di bumi, tetapi tidak di planet lain. Air menutupi hampir 71% permukaan bumi. Terdapat 1,4 triliun kilometer kubik (330 juta mil³) tersedia di bumi. Air sebagian besar terdapat di laut (air asin) dan pada lapisan-lapisan es (di kutub dan puncak-puncak gunung), akan tetapi juga dapat hadir sebagai awan, hujan, sungai, muka air tawar, danau, uap air, dan lautan es.
Air adalah semua air yang terdapat pada, di atas maupun di bawah permukaan tanah, termasuk dalam pengertian ini air permukaan, air tanah, air hujan, dan air laut yang dimanfaatkan di darat.
B. JENIS ATAU MACAM AIR
Air di bumi dapat digolongkan menjadi dua, yaitu :
1. Air Tanah
Air tanah adalah air yang berada di bawar permukaan tanah. Air tanah dapat kita bagi lagi menjadi dua, yakni air tanah preatis dan air tanah artesis.
a. Air Tanah Preatis
Air tanah preatis adalah air tanah yang letaknya tidak jauh dari permukaan tanah serta berada di atas lapisan kedap air / impermeable.
b. Air Tanah Artesis
Air tanah artesis letaknya sangat jauh di dalam tanah serta berada di antara dua lapisan kedap air.
2. Air Permukaan
Air pemukaan adalah air yang berada di permukaan tanah dan dapat dengan mudah dilihat oleh mata kita. Contoh air permukaan seperti laut, sungai, danau, kali, rawa, empang, dan lain sebagainya. Air permukaan dapat dibedakan menjadi dua jenis yaitu :
a. Perairan Darat
Perairan darat adalah air permukaan yang berada di atas daratan misalnya seperti rawa-rawa, danau, sungai, dan lain sebagainya.
b. Perairan Laut
Perairan laut adalah air permukaan yang berada di lautan luas. Contohnya seperti air laut yang berada di laut.
C. PROSES SIKLUS AIR
Siklus air dibedakan menjadi 3, yaitu :
1. Siklus Pendek (Siklus Kecil)
Yaitu air laut menguap menjadi gas, berkondensasi menjadi awan dan hujan yang jatuh laut.
2. Siklus Sedang (Siklus Menengah)
Yaitu air laut menguap menjadi gas, mengkondensasi dan dibawa angin membentuk awan di atas daratan, jatuh sebagai hujan lalu meresap ke tanah, masuk ke sungai dan ke laut lagi.
3. Siklus Besar (Siklus Panjang)
Yaitu air laut menguap menjadi gas kemudian membentuk kristal-kristal es di atas laut, dibawa angin ke daratan (pegunungan) dan jatuh sebagai salju membentuk gletser, masuk ke sungai lalu kembali ke laut.
Bentuk hasil curahan dari hasil kondensasi adalah hujan. Sedangkan bentuk curahan dari hasil sublimasi adalah salju yang masuk ke perairan darat dan perairan laut.
Ketersediaan dan Kelangkaan Air
Air merupakan elemen yang paling melimpah di atas Bumi, yang meliputi 70% permukaannya dan berjumlah kira-kira 1,4 ribu juta kilometer kubik. Apabila dituang merata di seluruh permukaan bumi akan terbentuk lapisan dengan kedalaman rata-rata 3 kilometer. Namun hanya sebagian kecil saja dari jumlah ini yang benar-benar dimanfaatkan, yaitu kira-kira hanya 0,003%. Sebagian besar air, kira-kira 97%, ada dalam samudera atau laut, dan kadar garamnya terlalu tinggi untuk kebanyakan keperluan. Dari 3% sisanya yang ada, hampir semuanya, kira-kira 87 persennya,tersimpan dalam lapisan kutub atau sangat dalam di bawah tanah.
Dalam satu tahun, rata-rata jumlah tersebut tersisa lebih dari 40.000 kilometer kubik air segar yang dapat diperoleh dari sungai-sungai di dunia. Bandingkan dengan jumlah penyedotan yang kini hanya ada sedikit di atas 3.000 kilometer kubik tiap tahun. Ketersediaan ini (sepadan dengan lebih dari 7.000 meter kubik untuk setiap orang) sepintas kelihatannya cukup untuk menjamin persediaan yang cukup bagi setiap penduduk, tetapi kenyataannya air tersebut seringkali tersedia di tempat-tempat yang tidak tepat. Misalnya, lembah sungai Amazon memiliki sumber yang cukup tetapi mengekspor air dari sini ke tempat-tempat yang memerlukan adalah tidak ekonomis.
Selain itu, angka curah hujan sering sangat kurang dapat dipercaya, sehingga persediaan air yang nyata sering jauh di bawah angka rata-rata yang ditunjukkan. Pada musim penghujan, hujan sangat hebat, namun biasanya hanya terjadi beberapa bulan setiap tahun; bendungan dan tandon air yang mahal diperlukan untuk menyimpan air untuk bulan-bulan musim kering dan untuk menekan kerusakan musibah banjir. Bahkan di kawasan-kawasan "basah" ini angka yang turun-naik dari tahun ke tahun dapat mengurangi persediaan air yang akan terasa secara nyata. Sedangkan di kawasan kering seperti Sahel di Afrika, masa kekeringan yang berkepanjangan dapat berakibat kegagalan panen, kematian ternak dan merajalelanya kesengsaraan dan kelaparan.
Pembagian dan pemanfaatan air selalu merupakan isu yang menyebabkan pertengkaran, dan sering juga emosi. Keributan masalah air bisa terjadi dalam suatu negara, kawasan, ataupun berdampak ke benua luas. Di Afrika, misalnya, lebih dari 57 sungai besar atau lembah danau digunakan bersama oleh dua negara atau lebih; Sungai Nil oleh sembilan, dan Sungai Niger oleh 10 negara. Sedangkan di seluruh dunia, lebih dari 200 sungai, yang meliputi lebih dari separo permukaan bumi, digunakan bersama oleh dua negara atau lebih. Selain itu, banyak lapisan sumber air bawah tanah membentang melintasi batas-batas negara, dan penyedotan oleh suatu negara dapat menyebabkan ketegangan politik dengan negara tetangganya.
Karena air yang dapat diperoleh dan bermutu bagus semakin langka, maka percekcokan dapat semakin memanas. Di seluruh dunia, kira-kira 20 negara, hampir semuanya di kawasan negara berkembang, memiliki sumber air yang dapat diperbarui hanya di bawah 1.000 meter kubik untuk setiap orang, suatu tingkat yang biasanya dianggap kendala yang sangat mengkhawatirkan bagi pembangunan, dan 18 negara lainnya memiliki di bawah 2.000 meter kubik untuk tiap orang.
Lebih parah lagi, penduduk dunia yang kini berjumlah 5,3 miliar mungkin akan meningkat menjadi 8,5 miliar pada tahun 2025. Beberapa ahli memperkirakan bahwa tingkat itu akan menjadi stabil pada angka 16 miliar orang. Apapun angka terakhirnya, yang jelas ialah bahwa tekanan yang sangat berat akan diderita oleh sumber-sumber bumi yang terbatas. Dan laju angka kelahiran yang tertinggi justru terjadi tepat di daerah yang sumber-sumber airnya mengalami tekanan paling berat, yaitu di negara-negara berkembang.
Dalam tahun-tahun belakangan ini, sebagian besar angka pertumbuhan penduduk terpusat pada kawasan perkotaan. Pertumbuhan penduduk secara menyeluruh di negara-negara berkembang kira-kira 2,1 persen setahun, tetapi di kawasan perkotaan lebih dari 3,5%. Daerah kumuh perkotaan atau hunian yang lebih padat di kota yang menyedot pemukim baru termiskin tumbuh dengan laju sekitar 7% setahun.
Hunian pinggiran yang lebih padat sering dibangun secara membahayakan di atas tanah yang tak dapat digunakan untuk apapun, seperti bukit-bukit terjal yang labil atau daerah-daerah rendah yang rawan banjir. Kawasan semacam itu tidak sesuai dengan perencanaan kota yang manapun, dipandang dari segi tata-letak ataupun kebakuan. Karena kawasan semacam itu dianggap sah secara hukum dan bersifat "darurat", pemerintah kota biasanya tidak cepat melengkapinya dengan prasarana seperti jalan, gedung sekolah, klinik kesehatan, pasokan air, dan sanitasi. Namun sebenarnya hunian semacam ini tak pelak akan menjadi pola bagi kota yang harus dilayani dengan prasarana modern; hal ini mempunyai implikasi-implikasi baik untuk pemecahan secara teknis maupun secara lembaga yang akan diperlukan sebagai syarat supaya segala layanan mencapai semua orang dan berkesinambungan.
Di sementara negara, masalah terbesar mengenai persediaan air berkembang bukan hanya dari masalah kelangkaan air dibanding dengan jumlah penduduk, melainkan dari kekeliruan menentukan kebijakan tentang air, dan baru menyadari masalah-masalah tersebut lama setelah akibat yang tak dikehendaki menjadi kenyataan. Jadi meskipun penambahan investasi dalam sektor ini diperlukan, penambahan itu perlu disertai dengan perubahan: Prioritas utama haruslah pada cara pemanfaatan paling bijak terhadap investasi besar yang telah ditanam dalam sektor ini setiap tahun.
KELANGKAAN AIR
Kelangkaan air sudah merupakan kenyataan di banyak negara berkembang yang akan makin memburuk dengan meningkatnya jumlah penduduk. Urbanisasi yang cepat mengakibatkan masalah serius dalam hal penyediaan dan pemeliharaan layanan air dan sanitasi yang pokok di daerah-daerah perkotaan.
Konservasi sumber-sumber daya, penggunaan yang efisien, dan penyediaan layanan yang berkesinambungan, terjangkau dan diterima bagi setiap orang harus lebih diperhatikan daripada pelayanan yang diperuntukkan bagi sedikit orang terpilih, dan penggunaan teknologi yang membutuhkan subsidi besar yang akan macet hanya dalam waktu singkat.
Teknologi manapun yang bisa memenuhi kriteria tersebut harus dianggap cocok. Dari sistem yang sederhana tapi jalan lebih banyak manfaat yang bisa diharapkan daripada dari yang mewah tapi macet. Hal ini bisa berarti memulai dengan membuat kran umum untuk penyediaan air dan kakus VIP untuk layanan sanitasi yang sudah merupakan perbaikan besar daripada sekedar menunggu hingga sistem yang 'tepat' bisa didirikan. Pada saat yang bersamaan masyarakat berharap bisa memperbaiki sistem mereka begitu situasi dan kondisi memungkinkan. Dan kemungkinan ini harus menjadi pilihan.
Banyak kelompok masyarakat di negara berkembang memiliki banyak sumber daya tertentu tapi miskin keahlian dan peralatan impor. Karena itu proyek yang diharapkan bisa tahan lama harus lebih menekankan pada pengembangan industri lokal untuk manufaktur dan konstruksi. Kekokohan harus lebih ditekankan daripada keterandalan; maksudnya, memungkinkan perbaikan cepat sesuatu yang rusak dengan memakai sumber-sumber daya lokal yang ada.
Perencana perlu berpikir "kecil dan lokal". Membuat perencanaan yang besar dan terpusat memerlukan pengendalian atas urbanisasi yang akan datang. Di banyak negara berkembang kendali inilah yang tidak ada, dan mungkin adanya proyek-proyek besar yang terpusat itu secara ekonomis tidak lagi signifikan.
Proyek-proyek harus `sirkular', bukan `linear'. Idealnya, limbah harus diolah dan didaur ulang di tempat limbah itu berasal. Membuang limbah sehingga menjadi masalah bagi masyarakat lain tidak lagi bisa diterima.
Akhirnya, penyediaan air harus diintegrasikan dengan layanan lingkungan perkotaan yang lainnya. Terutama, dalam kaitan eratnya dengan sanitasi, dua hal ini harus dikembangkan secara paralel. Tetapi, sanitasi tidak akan dianggap sebagai prioritas penting tanpa adanya saluran pembuangan air (selokan-selokan) dan selokan tidak akan jalan tanpa adanya pengelolaan limbah padat yang lebih baik.
Manfaat dan perlindungan optimal terhadap lingkungan hanya bisa diberikan oleh paket layanan terpadu yang dirancang dengan baik.
Daftar Pustaka
World Development Report 1992: Development and the Environment. Washington, D.C.: The World Bank, 1992.
World Health Organization. Report of the WHO Commission on Health and Environment. Document WHO/EHE/92.1. Geneva, Switzerland: World Health Organization, 1992.
World Resources, 1992-93. Report by the World Resources Institute in collaboration with the United Nations Environment Program and the United Nations Development Program. New York: Oxford University Press, 1992.
www.wikipedia.com
ENERGI MATAHARI
Pengertian Matahari
Matahari adalah bintang terdekat dengan Bumi dengan jarak rata-rata 149.680.000 kilometer (93.026.724 mil). Matahari serta kedelapan buah planet (yang sudah diketahui/ditemukan oleh manusia) membentuk Tata Surya. Matahari dikategorikan sebagai bintang kecil jenis G.
Matahari adalah suatu bola gas yang pijar dan ternyata tidak berbentuk bulat betul. Matahari mempunyai katulistiwa dan kutub karena gerak rotasinya. Garis tengah ekuatorialnya 864.000 mil, sedangkan garis tengah antar kutubnya 43 mil lebih pendek. Matahari merupakan anggota Tata Surya yang paling besar, karena 98% massa Tata Surya terkumpul pada matahari.
Di samping sebagai pusat peredaran, matahari juga merupakan pusat sumber tenaga di lingkungan tata surya. Matahari terdiri dari inti dan tiga lapisan kulit, masing-masing fotosfer, kromosfer dan korona. Untuk terus bersinar, matahari, yang terdiri dari gas panas menukar zat hidrogen dengan zat helium melalui reaksi fusi nuklir pada kadar 600 juta ton, dengan itu kehilangan empat juta ton massa setiap saat.
Matahari dipercayai terbentuk pada 4,6 miliar tahun lalu. Kepadatan massa matahari adalah 1,41 berbanding massa air. Jumlah tenaga matahari yang sampai ke permukaan Bumi yang dikenali sebagai konstan surya menyamai 1.370 watt per meter persegi setiap saat. Matahari sebagai pusat Tata Surya merupakan bintang generasi kedua. Material dari matahari terbentuk dari ledakan bintang generasi pertama seperti yang diyakini oleh ilmuwan, bahwasanya alam semesta ini terbentuk oleh ledakan big bang sekitar 14.000 juta tahun lalu.
Manfaat matahari
• Matahari mempunyai fungsi yang sangat penting bagi bumi. Energi pancaran matahari telah membuat bumi tetap hangat bagi kehidupan, membuat udara dan air di bumi bersirkulasi, tumbuhan bisa berfotosintesis, dan banyak hal lainnya.
• Merupakan sumber energi (sinar panas). Energi yang terkandung dalam batu bara dan minyak bumi sebenarnya juga berasal dari matahari.
• Mengontrol stabilitas peredaran bumi yang juga berarti mengontrol terjadinya siang dan malam, tahun serta mengontrol planet-planet lainnya. Tanpa matahari, sulit dibayangkan kalau akan ada kehidupan di bumi.
Radiasi Matahari
Radiasi Matahari adalah pancaran energi yang berasal dari proses thermonuklir yang terjadi di matahari. Energi radiasi matahari berbentuk sinar dan gelombang elektromagnetik. Spektrum radiasi matahari sendiri terdiri dari dua yaitu, sinar bergelombang pendek dan sinar bergelombang panjang. Sinar yang termasuk gelombang pendek adalah sinar x, sinar gamma, sinar ultra violet, sedangkan sinar gelombang panjang adalah sinar infra merah. Jumlah total radiasi yang diterima di permukaan bumi tergantung 4 (empat) faktor. 1.Jarak matahari. Setiap perubahan jarak bumi dan matahari menimbulkan variasi terhadap penerimaan energi matahari 2.Intensitas radiasi matahari yaitu besar kecilnya sudut datang sinar matahari pada permukaan bumi. Jumlah yang diterima berbanding lurus dengan sudut besarnya sudut datang. Sinar dengan sudut datang yang miring kurang memberikan energi pada permukaan bumi disebabkan karena energinya tersebar pada permukaan yang luas dan juga karena sinar tersebut harus menempuh lapisan atmosphir yang lebih jauh ketimbang jika sinar dengan sudut datang yang tegak lurus. 3. Panjang hari (sun duration), yaitu jarak dan lamanya antara matahari terbit dan matahari terbenam. 4. Pengaruh atmosfer. Sinar yang melalui atmosfer sebagian akan diadsorbsi oleh gas-gas, debu dan uap air, dipantulkan kembali, dipancarkan dan sisanya diteruskan ke permukaan bumi.
Energi Matahari
Sumber energi dapat diperbaharui dalam jumlah tak terbatas
Energi matahari adalah radiasi dari cahaya dan panas dari matahari yang telah lama digunakan manusia sejak zaman dahulu. Radiasi matahari yang menghasilkan tenaga gelombang merupakan energi yang dapat diperbaharui dengan jumlah yang sangat besar di Bumi.
Teknologi tenaga surya dibedakan menjadi energi pasif dan energi aktif tergantung bagaimana cara mendapatkan, mengubah dan menyalurkan energi matahri, Teknologi energi aktif termasuk dalam pengunaan panel photovoltaic dan penyimpan panas matahari (secara elektrik atau peralatan mekanik) untuk mengubah cahaya matahari menjadi hasil yang dapat digunakan. Teknologi energi pasif termasuk menghadapkan bangunan ke Matahari, mengunakan bahan yang baik (konduktor) untuk mengedarkan panas atau cahaya.
Peluang Energi Matahari
Pengarang mengatakan bahwa luar angkasa adalah tempat dimana energi diperoleh - dalam bentuk sinar matahari yang tidak terbatas, sepanjang waktu.
Teorinya cukup sederhana - satelit pada orbit geosynchronous (mengitari bumi selama 24 jam) dapat mengubah cahaya matahari menjadi kekuatan menggunakan sel surya, dan kemudian memantulkannya kembali ke bumi sebagai gelombang mikro. Sejujurnya, ini pasti akan menjadi sumber tenaga utama pada abad 21.
Ini bukanlah sistem khayalan "kue pie di langit" lainnya, sebagaimana yang disuarakan orang-orang yang skeptis pada kita agar percaya. Teknologi komponennya telah dites dan didemonstrasikan. Berapakah besar biaya untuk membuat dan mengoperasikan sistem semacam ini? Dan kemampuan ekonomisnya, serta pertimbangan lingkungan? Pemanas air surya domestik telah ditolak untuk beberapa alasan tadi - dan sistem tenaga satelit jauh lebih kompleks!
Sejumlah solusi rekayasa telah diusulkan oleh penulis untuk meningkatkan efisiensi. Satu dari alternatif-alternatif yang diusulkan adalah menggunakan teknologi laser (ketimbang gelombang mikro) untuk memantulkan energi ke bumi. Hal ini dipandang lebih aman untuk digunakan, dan wilayah yang dibutuhkan untuk menerima transmisi dari luar angkasa hanyalah beberapa meter persegi saja. bagaimanapun, teknologi ini masih dibangun.
Penulis mengatakan bahwa sangat penting untuk tidak mengerjakan desain / prototype tertentu sendirian, tapi biarkanlah pikiran kita terbuka untuk menentukan sistem yang paling praktis. Tujuan akhirnya - penangkapan energi matahari dan pemancarannya ke bumi, membuatnya layak dibuat berdasarkan jumlah uang dan usaha yang dikeluarkan untuk membuatnya.
Berbagai Aplikasi Energi Matahari
Energi matahari merupakan energi yang utama bagi kehidupan di bumi ini. Berbagai jenis energi, baik yang terbarukan maupun tak-terbarukan merupakan bentuk turunan dari energi ini baik secara langsung maupun tidak langsung. Energi yang merupakan turunan dari energi matahari misalnya:
• Energi angin yang timbul akibat adanya perbedan suhu dan tekanan satu tempat dengan tempat lain sebagai efek energi panas matahari.
• Energi air karena adanya siklus hidrologi akibat dari energi panas matahari yang mengenai bumi.
• Energi biomassa karena adanya fotosintesis dari tumbuhan yang notabene menggunakan energi matahari.
• Energi gelombang laut yang muncul akibat energi angin.
• Energi fosil yang merupakan bentuk lain dari energi biomassa yang telah mengalami proses selama berjuta-juta tahun.
Selain itu energi panas matahari juga berperan penting dalam menjaga kehidupan di bumi ini. Tanpa adanya energi panas dari matahari maka seluruh kehidupan di muka bumi ini pasti akan musnah karena permukaan bumi akan sangat dingin dan tidak ada makluk yang sanggup hidup di bumi.
Energi Panas Matahari sebagai Energi Alternatif
Energi panas matahari merupakan salah satu energi yang potensial untuk dikelola dan dikembangkan lebih lanjut sebagai sumber cadangan energi terutama bagi negara-negara yang terletak di khatulistiwa termasuk Indonesia, dimana matahari bersinar sepanjang tahun. Dapat dilihat dari gambar di atas bahwa energi matahari yang tersedia adalah sebesar 81.000 TerraWatt sedangkan yang dimanfaatkan masih sangat sedikit.
Ada beberapa cara pemanfaatan energi panas matahari yaitu:
1. Pemanasan ruangan
2. Penerangan ruangan
3. Kompor matahari
4. Pengeringan hasi pertanian
5. Distilasi air kotor
6. Pemanasan air
7. Pembangkitan listrik
Keuntungan dan Kerugian Energi Panas Matahari
Keuntungan dari penggunaan energi panas matahari antara lain:
• Energi panas matahari merupakan energi yang tersedia hampir diseluruh bagian permukaan bumi dan tidak habis (renewable energy).
• Penggunaan energi panas matahari tidak menghasilkan polutan dan emisi yang berbahaya baik bagi manusia maupun lingkungan.
• Penggunaan energi panas matahari untuk pemanas air, pengeringan hasil panen akan dapat mengurangi kebutuhan akan energi fosil.
• Pembanguan pemanas air tenaga matahari cukup sederhana dan memiliki nilai ekonomis.
Kerugian dari penggunaan energi panas matahari antara lain:
• Sistem pemanas air dan pembangkit listrik tenaga panas matahari tidak efektif digunakan pada daerah memiliki cuaca berawan untuk waktu yang lama.
• Pada musim dingin, pipa-pipa pada sistem pemanas ini akan pecah karena air di dalamnya membeku.
• Membutuhkan lahan yang sangat luas yang seharusnya digunakan untuk pertanian, perumahan, dan kegiatan ekonomi lainya. Hal ini karena rapat energi matahari sangat rendah.
• Lapisan kolektor yang menyilaukan bisa mengganggu dan membahayakan penglihatan, misalnya penerbangan.
• Sistem hanya bisa digunakan pada saat matahari bersinar dan tidak bisa digunakan ketika malam hari atau pada saat cuaca berawan.
• Penyimpanan air panas untuk perumahan bukan merupakan masalah, tetapi penyimpanan uap air pada pembangkit listrik memerlukan teknologi yang sulit.
DAFTAR PUSTAKA
Arismunandar, W. 1995. Teknologi Rekayasa Surya. Bandung. Pradnya Paramita.
Boyle, G. 1996. Renewable Energy. Milton Keynes. The Open University.
Gordon Feller. India Building Large-Scale Solar Thermal Capacity. Available from http://www.ecoworld.org/Home/Articles2.cfm?TID=325
Ivan A Hadar. Kompas, 11 Oktober 2005. Keluar dari Ketergantungan (Pasar) BBM.
Passive Solar Architecture – Heating. Available from www.azsolarcenter.com/design/pas-2
Solar Cooking. Available from www.energiinfo.org/solar_cookingcooking
Subscribe to:
Post Comments (Atom)
halo kami jasa interior
ReplyDeletesilahkan membaca